"Northern" type of nasal aerodinamics:

1 - inferior turbinate bone ; 2 - nasal septum.

          

NASAL AERODYNAMICS and RHINOSINUSITISES

Relationship between two parallel respiratory structures in the nose

The main cause of the night snoring is violations of the nasal aerodynamics

The functionality of the small ostiums of the nasal sinuses

The real significance of the limen nasi

NASAL AERODYNAMICS

VARIANTS OF NASAL AERODYNAMICS

NORMOGRAM OF NASAL AERODYNAMICS

PHYSIOLOGICAL BRIDGE REPRESENTED BY THE NASAL VALUE

SURGICAL RECONSTRUCTION OF NASAL AERODYNAMICS

SEPTOPLASRY UNDER CONTROL OF NASAL AERODYNAMICS

CONTRAINDICATION TO SEPTOPLASTY

PROTECTION OF THE INFERIOR NASAL PASSAGE FROM INSPIRATION

THE INSIDIOUSNESS OF THE UNILATERAL "SOUTHERN" NASAL AERODYNAMICS.

SNORING WHEN NASAL RESPIRATION IS SAVED.

Individual defence against infection by Severe Acute Respiratory Syndrome - SARS

           
              
 

"Northern" type of aerodinamics

- soft (warm, moist) air 
 

Normogram of nasal aerodynamics

(Uliyanov Y.P Normogram of nasal aerodynamics. XYI World Congr. Of Otolar. Head Neck Surg.(Sydney, Australia, 2-7 March, 1997: 1603-1607.)
 
 

SUMMARY

To register the data of the nasal aerodynamics characteristic of healthy subjects, we have examined 200 obviously healthy persons (age or sex were represented equally). With this aim in view, we have devel-oped a special device and a method for its application to study the air in the nasal passage. The main air flow during inspiration passed through the median nasal passage, whereas it passed through the inferior nasal passage in expiration. This redistribution was especially pronounced in 22% of the subjects examined. Twenty conventional units (CU) passed through the inferior nasal passage, 80 CU passed through the median nasal passage and 10 CU passed through the superior nasal passage. In expiration, 80 CU go through the inferior nasal passage, 20 CU through the median nasal passage, and 10 CU through the superior nasal pas-sage. This protective mechanism of the mucosa of the inferior nasal passage is likely to be especially important, as the mucosa of the nasal looked quite healthy: succulent, moist and pink. 

INTRODUCTION

Nasal aerodynamics is known to include the complex of interre-lations of various air flows in nasal cavities and the paranasal sinuses with the marked redistribution of these flows during inhalation and ex-halation, which provides for the physiologic function of the nose. It is well-known that the protective function of the nose is the leading one. This is aimed at protective of the nose is the leading one. This aimed at protection of the superior inspiratory ways from the irri-tation caused by injuring factors of the inspired air. The warming and moistening of the inspired air are the main ones among the protective functions of the nose [Atkarskaya, A.A., 1925; Cole, R., 1953; Ingelstedt, S., 1956; Piskunov, S.Z., 1993]. Therefore, defective nasal aerodynamics results necessarily in the inadequate function of the nose, which plays a leading role in etiology and pathogenesis of most diseases of the nose and the paranasal sinuses. This explains the importance of the study of nasal aerodynamics in the otorhinolaryngology, in view of the continuing trend to a rise in the in-cidence rate of diseases of the nose and paranasal sinuses [Palchun, V.T., et al., 1982; Piskunov, G.Z., 1994]. Many studies nave been carried out to analyze the air flows at the entrance to the nose, in the vestibule of nose and in the nasopharynx: tachometric, manometric, photometric, volumetric, chronometric, etc., including the studies with the use of electronics and computers. How-ever, all of them fail to decipher the air flows formed in the nasal mea-tuses or the mechanism of the protective function of the nose. Although several investigators came very close to the analysis of separate air flow within the nasal passages [Aronsky, A.M., 1963; Yedinak, E.N., (Patent of USSR no.187009)], their studies did not advance the research in this domain much, because of their very narrow, strictly local approach and the limitations of their techniques and devices. It is necessary, therefore, to carry out direct studies of the air flows in the nasal passages and to draw up the normogram of nasal aerodynamics, without which the further study of the protective func-tions of the nose is impossible.  ;

PATIENTS AND METHOD

With this aim in view, we have developed a special device and a method for its application to study the air flows in the nasal passages (Russia Federation's patents ¹¹1,572,505 and 1,602,472). 
 
    Fig. 1. The device for study nasal aerodinamics (Y. P. Uliyanov, 1998) 
1. handhold 
2. flexible tube 
3. air capillary 
4. manometric microprocessor 
5. air-drawing tube 
6. air pump 
7. flap-breaker 
8. registration block 
9.millivoltmeter and electrical amplifier 
10. recording device 
11. switch 
 
  The device consists of the air-drawing tube in the shape of the air capillary connected with the manometric microprocessor, which sends electric signals to the millivoltmeter and recording devices through the electrical amplifier. The millivoltmeter is intended for adjusting the sensi-tivity of the device and for observing the direction and the degree of devia-tion of the pointer during the patient's inspiration and expiration. To examine nasal aerodynamics, the distal end of the air capillary is introduced into the nasal passages under visual control, whereas the subject is told to breathe uniformly and quietly (3 seconds for an inspi-ration and 3 seconds for an expiration). To register the data of the nasal aerodynamics characteristics of healthy subjects, we have examined 200 obviously healthy persons (men and women were represented equally). The age distribution was repre-sented by equal groups of persons aged 15 to 25, below 35, bellow 45, below 55, and below 65 years. These subjects have seldom caught a cold (less than once in three to five years). Their nasal, sinuses were free from disease, as confirmed by roentgenology. The nasal septum was along the median line, the voice, clear. The sense of smell was free from evident diversion from the normal. The degree of deviation of the millivoltmeter pointer was assessed in conditional units, with the read-ings being rounded of to ten, as smaller divisions, exceeding the method’s accuracy limits, were unreliable. 

RESULTS

The study has revealed the similar re-distribution of air flows during inspiration and expiration in all subjects: the main air flow during inspiration passed through the median nasal passage, whereas it passed through the inferior nasal passage in expiration. This redistribution was especially pronounced in 22% of the subjects examined (they were separated as group 1). In the subjects of this group, the air flow during inspiration, having passed through the vestibule of the nose, was split into three streams passing along three nasal passages. Twenty conventional units (CU) passed through the inferior nasal passage, 80 CU passed through the median nasal passage and 10 CU passed through the superior nasal passage. It is this distribution that provides for the maximum possible moistening and warming of the air flow during inspiration, as its main mass comes into the median and superior nasal passages, whereas all paranasal sinuses open (the cribrate labyrinth, maxillary sinuses, frontal sinuses, and sphenoidal sinuses), being washed by the air stream. The air coming through the inferior nasal passage is not subjected to such washing because of the absence of any sinuses in the latter. Therefore, the mucosa of the inferior nasal passage undergoes the greatest load from the drying and cooling impact of the inhaled air. However, it is thanks to the re-distribution of the main air flow during expiration (when the air flow goes out from the lungs mainly through the inferior nasal passage) that the mucosa of the inferior nasal passage is abun-dantly moistened and warmed, thus making up, so to say, for unfavor-able factors of the air flow in inspiration. In expiration, 80 CU go through the inferior nasal passage, 20 CU through the median nasal, and 10 CU through the superior nasal passage. This protective mecha-nism of the mucosa of the inferior nasal passage is likely to be especially important, as the mucosa of the inferior nasal passage looked quite healthy: succulent, moist and pink. The minimal re-distribution of the main air flow during inspira-tion and expiration was found in 37% of the subjects (group 3). In them, during inspiration 20 to 30 CU of the air flow came through the inferior nasal passage, 40 to 50 CU through the median nasal passage, and 10 CU through the superior nasal passage. On visual observation, the nasal passages in these persons were some what wider, whereas the mucosa of the inferior nasal passage was even subatrophic, but without any signs of inflammation. The remaining subjects (group 2) had either the transitional values or the difference between the values of the right and left halves of the nose exceeded 10 CU, but they were within the marginal groups. Thus, e.g., the values of the right half of the nose corresponded to group 1, whereas those of the left half of the nose belonged to group 3. We failed to establish any age- or se-connected relationship. 

DISCUSSION

An analysis of the values in these groups has shown that in group 1 the main air flow can be subjected to the most possible proc-essing in the nose and the paranasal sinuses. This fact reflects the maximum possibility of the aerodynamic processing iof the air in the nose, being in fact the maximum possible degree of the protective func-tion of the nose as exerted by nasal aerodynamics. Therefore, the ideal nasal aerodynamics (to our current knowledge) providing for the maxi-mum protective effect should be considered as the normogram which has been created by nature in the course of development and improve-ment of its adaptive qualities. Based on the knowledge of the normogram of nasal aerodynamics as represented by group 1 of the persons under study and variants of ac-ceptable alterations of nasal aerodynamics seen in healthy people, we are able to carry out more valid research of the features of nasal aerody-namics in the course of diseases of the nose, which will be the topic of further studies. 

CONCLUSIONS

In practically healthy individuals, three varieties of nasal aerody-namics have been revealed, of which one provides the most perfect pro-tection of the respiratory duct from the inhaled «rough» air, and the re-maining two show protective properties sufficient to maintain the practi-cally healthy condition, but indisputably are subject to a higher risk of respiratory duct mucosae injury as compared with the first group, whose parameters were taken as the normogram of nasal aerodynamics. All parameters not fitting in the three groups in question indicate a sharp deterioration in the protective function of nose and an increased risk of respiratory diseases, which will be subject of further publications. 

REFERENCES

1. Atkarskaya, A.A., On the physiology of paranasal sinuses. – Zhurnal ushnykh, nosovykh i gorlovykh boleznei, 1925, no.5-6, pp.274-295 [in Russian]. 
2. Bachmann, W., Technik und Bedeutung der Funktionsprüfung des Osteun maxillare. – HMO (Berl.), 1978, vol.26, pp.25-27. 
3. Cole, R., Some aspects of temperature, moisture and heat relationships in the upper respiratory tract. – J,Laryngol.Otol., 1953, no.67, pp.449-456. 
4. Ingelstedt, S., Studies on the conditioning of air in the respiratory. – Acta Otolaryngol., 1956, vol.131, pp.1-10. 
5. Likhachev, A.G., in: Diseases of ear, throat, and nose. Moscow, 1947, 374 pp. [in Russian]. 
6. Palchun, V.T., Yu.A.Ustyanov, and N.D.Dmitriyev, Paranasal sinusiti-des. Moscow, 1982, 150 pp. [in Russian]. 
7. Piskunov, G.Z., in: Materals of the international symposium «Allergic and infections rhino-sinusitides» held in Jerusalem, 1994. – Rossiiskaya rinologiya, 1994, no.2, pp.91-94. 
8. Piskunov, S.Z., Physiology and pathophysiology of nose and paranasal sinuses. – Rossiiskaya rinologiya, 1993, no.1, pp.19-38. [in Russian]. 
9. Sagalovich, B.M., Physiology and pathophysiology of the upper respi-ratory tract. 1967, 328 pp. [in Russian]. 
10. Yedinak, E.N., A method of the analysis of air exchange within the Highmore sinus in highmoritides. Patent of USSR no.187009.